QT prolongation and its evolution over time in the STREAM 1 trial

Dr Gareth Hughes on behalf of the STREAM collaboration

MRC Clinical Trials Unit at UCL
No disclosures or conflicts of interest to declare
Introduction

• STREAM Stage 1
• Regimen similar to Bangladesh regimen (Aung KJ et al. IJTLD 2014)
• Phase 3 non-inferiority RCT for rifampicin resistant TB
• Short 9-11 month regimen (n=282)

 versus

• Long 20-24 month WHO 2011 control regimen (n=142)
Short 9-11 month regimen

<table>
<thead>
<tr>
<th>Drug</th>
<th>Weight group</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxifloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>400 mg</td>
</tr>
<tr>
<td>Clofazimine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>50 mg</td>
</tr>
<tr>
<td>Ethambutol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>800 mg</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>1000 mg</td>
</tr>
<tr>
<td>Isoniazid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>300 mg</td>
</tr>
<tr>
<td>Prothionamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>250 mg</td>
</tr>
<tr>
<td>Kanamycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 33 kg</td>
<td>15 mg per kilogramme body weight (maximum 1g)</td>
</tr>
</tbody>
</table>
Long 20-24 month regimen

• Patients received local version of the WHO 2011 regimen
• Fluoroquinolone was either 400mg moxifloxacin or 750mg levofloxacin
• Neither clofazimine or bedaquiline were part of allocated regimen
Why focus on ECG data?

• Moxifloxacin 400mg dose known to prolong QT interval
• Short regimen uses 600 mg and 800 mg moxifloxacin with clofazimine
• Long duration even with “short” course
• Prolonged QT asymptomatic but can quickly progress to Torsade de pointes, ventricular fibrillation and ultimately sudden cardiac death
Monitoring

- Patients with QT/QTcF ≥500ms at screening were excluded
- Patients had 4-weekly ECG monitoring up to 52 weeks
- If QT/QTcF ≥500 ms the fluoroquinolone was temporarily withheld
- Management algorithm:
 - attempt to reintroduce moxifloxacin at 400mg dose
 - if unsuccessful switch to levofloxacin
 - if still unsuccessful clofazimine dose reduced or later stopped
Results shown are of patient monitoring up to the point of treatment change of more than one drug at which point they were censored.

Bars indicate +/- 1 standard error.
Mean (SE) change in QTcF from baseline

Bars indicate +/- 1 standard error
Distribution of QTcF by time

Week 0

Week 16

Week 40

Week 52

Density vs. QTcF (ms)

Short Long (Moxi) Long (Non-Moxi)
Time to QTcF exceeding ≥ 500 ms threshold
Summary

- Mean QTcF changes were greater on the Short regimen
 - Max. difference 24ms at week 28
- Mean QTcF differences between treatment arms had returned to less than 10ms by week 52
- QTcF ≥500 ms 10% Short regimen v 4 % Long regimen; HR (95% CI); 2.82 (1.09-7.33) log-rank test p = 0.034
Conclusions

- There was more QT prolongation on the Short regimen, with twice as many participants having QT/QTcF ≥500ms; this occurred throughout treatment.
- QTcF increase resolved by week 52, after almost all patients on the Short regimen had completed treatment.
- Patients on the Long regimen continued treatment for at least 18 months; any effect of treatment on QTcF would still be present at week 52.
- Density plots demonstrate the Short regimen alters the QTcF distribution to a greater extent than the Long regimen.
We wish to thank all those involved in the conduct of STREAM Stage 1

The funders USAID and Medical Research Council/DFID, UK

The site investigators, staff and participants at

Armauer Hansen Research Institute, Addis Ababa; Doris Goodwin Hospital, Pietermaritzburg; King Dinuzulu Hospital, Durban; National Centre for Communicable Diseases, Ulaanbaatar; Pham Ngoc Thach Hospital, Ho Chi Minh City; Sizwe Hospital, Johannesburg; St Peter’s Hospital, Addis Ababa

Institute of Tropical Medicine, Antwerp; Vital Strategies, New York; Liverpool School of Tropical Medicine; STREAM Trial Management Team at MRC Clinical Trials Unit at UCL; Trial Steering Committee & Independent Data Monitoring Committee; Technical Advisors

This study is made possible by the generous support of the American people through the United States Agency for International Development (USAID) through the TREAT TB Cooperative Agreement No. GHN-A-00-08-00004. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.